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ABSTRACT

Various mechanisms for driving double layers in plasmas are briefly described, including applied potential

drops, currents, contact potentials, and plasma expansions. Some dynamical features of the double layers are dis-

cussed. These features, as seen in simulations, laboratory experiments, and theory, indicate that double layers and

the currents through them undergo slow oscillations which are determined by the ion transit time across an effective

length of the system in which the double layers form. It is shown that a localized potential dip forms at the low

potential end of a double layer, which interrupts the electron current through it according to the Langmuir criterion,

whenever the ion flux into the double is disrupted. The generation of electric fields perpendicular to the ambient

magnetic field by contact potentials is also discussed. Two different situations have been considered; in one, a

low-density hot plasma is sandwiched between high-density cold plasmas, while in the other a high-density current
sheet permeates a low-density background plasma. Perpendicular electric fields develop near the contact surfaces.

In the case of the current sheet, the creation of parallel electric fields and the formation of double layers are also

discussed when the current sheet thickness is varied. Finally, the generation of electric fields (parallel to an ambient

magnetic field) and double layers in an expanding plasmas is discussed.

I. INTRODUCTION

Since the early days of double layer (DL) research (e.g., Block, 1972), considerable progress has been made

in the understanding of the formation of DL's and their dynamical features. The purpose of this summary is to

highlight some of the major findings on the generation of electric fields in collisionless plasmas and on the forma-

tion, dynamics, and structure of double layers. We define double layers as electrostatic potential structures that can

support localized electric fields in collisionless plasmas. The nomenclature "double layer" is derived from the fact

that the electric field is primarily supported by two layers of charges (positive and negative). Such potential struc-

tures can form in current carrying plasmas as well as in the absence of a current.

Figure 1 shows a summary of the various mechanisms that can create double layers in a plasma. Broadly
speaking, the mechanisms can be categorized as follows:

1. Applied potential drop across a plasma

2. Current through a plasma

3. Contact potentials

4. Plasma expansion.
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These mechanisms are not as distinct from each other as it may appear. For example, when a potential drop is

applied across a plasma, a current develops (Singh, 1980, 1982; Singh and Schunk, 1982a), or when a current is

drawn through a plasma, a potential drop develops (Singh and Schunk, 1982b, 1984a). The characteristics of

double layers driven by an applied potential drop and by a current through the plasma have been compared, and they
have been shown to be very similar (Singh and Schunk, 1983a).

Contact potentials develop when plasmas with different properties come into contact. The difference in the

ion and electron gyroradii plays an important role in creating perpendicular electric fields when the contact surfaces

are parallel to the ambient magnetic field. Typically, the scale length of such electric fields is of the order of the ion

Larmor radius. The potential structures associated with such electric fields appear as perpendicular or oblique

double layers. When the perpendicular electric fields are shorted out at some location away from the source region,

it is possible to generate tWo-dimensional potential structures with electric fields parallel to the ambient magnetic

field. Such two-dimensional potential structures are known to play an important role in auroral electrodynamics. It

is worth mentioning that the generation of a parallel potential drop by shorting out the perpendicular electric fields

away from their source region is, in a sense, equivalent to applying a potential drop. Here, the perpendicular poten-

tial drop becomes a parallel potential drop due to the conducting boundary condition.

Current sheets or filaments of a finite thickness in plasmas are examples where the plasma processes driven

by both the contact potential and the current take place. Multi-dimensional double layers form in such cases (Singh

et al., 1983, 1984, 1985, 1986).

When a high-density plasma expands along an ambient magnetic field into a low-density plasma or into a

vacuum, electric fields are set up. Near the expansion front, a double-layer type-charge separation occurs. Thus,

currentless double layers form in expanding plasmas (Singh annd Schunk, 1984b).

The purpose of this paper is to present a summary of our studies on the above mechanisms for generating

electric fields and double layers. These studies have been performed either with a one-dimensional Vlasov-Poisson

solver (Singh, 1980) or with a two-dimensional particle-in-cell (PIC) code (Singh et al., 1983, 1985).

II. APPLIED POTENTIAL DROP

Basically, the process of DL formation is creating a potential drop. Thus, the application of a potential drop
across a collisionless plasma may drive a double layer along with a host of other plasma processes (Singh and

Schunk, 1982a). There are several laboratory experiments (Coakley and Hershkowitz, 1979; Iizuka et al., 1983,

1985) and numerical simulations (Joyce and Hubbard, 1978; Singh, 1980, 1982; Singh and Thiemann, 1980a,b;

Singh and Schunk, 1982a,c, 1983a; Johnson, 1980) in which DL'shave been driven by applied potential drops.

Some of these experiments and simulations (Singh, 1982; Singh and Schunk, 1982a, 1983a) show remarkable

similarities in both the processes leading to the formation of a DL and its dynamics. It is found that these processes

are cyclic; the DL formation leads to current interruption, as the DL moves the currents recuperate, leading to the
reformation of a new DL. In connection with several space and cosmic plasma phenomena, Alfv6n (1982) has

invoked the role of exploding double layers, which are cyclic. Thus, it is relevant here to discuss the cyclic behavior

of double layers as seen in laboratory experiments and simulations.

Here we illustrate some important plasma processes taking place during recurring DL formation by present-

ing results from one-dimensional Vlasov simulations (Singh, 1982; Singh and Schunk, 1982a,c, 1983a) in which

a._ ._..... :A_ Vm_m a _< -< d is followed by solving the Viasov and Poisson equations after at,,c uy,m,,,_._ of the-' ...... of length 0 x

potential drop A_bois applied across the plasma. In Figure 2 we present a summary of a simulation in which d = 100

h0 and A_b0 = 30 kBTo/e, where k0 is the plasma Debye length with To as the electron and ion temperature.
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Applying a potential drop across a quasi-neutral plasma is equivalent to applying a uniform electric field Eo

(see the potential profile at t - 0 in Figure 2a), whose strength depends on the applied drop A_boand the length of the

system; Eo -_ A_bo/d (Fig. 2a). This field accelerates electrons and ions in opposite directions. However, during very

early time ion acceleration is not important, but the electrons are accelerted to the extent that a current is set up in the

plasma which may exceed the current at the cathode boundary, x = 0 (Fig. 2b). When this happens a positive space

charge appears near the cathode (x = 0, in Fig. 2) modifying greatly the initial linear potential profile (Fig. 2a). This

potential perturbation evolves into an electron hole in the form of a positive potential pulse which propagates in the

direction of the initial electric field (Fig. 2a) and it is destroyed when it reaches the anode end. During the phase of

the electron hole propagation, counterstreaming electron beams form (Singh, 1982). After this phase the plasma is

subject to a strong high frequency turbulence, which modifies the plasma greatly. One important modification is the

expulsion of the plasma and creation of plasma cavity. In simulations with very short lengths (Singh, 1980) (£ <
100 hdo), the formation of an extended cavity is not seen. However, as the system length increases, the extended

cavity becomes an important feature of the plasma (Singh, 1982; Singh and Schunk, 1982a). Also, the ion flux into

the plasma from the anode boundary is totally disrupted; as a matter of fact, an outflux of ions occurs.

The potential step near the cathode evolves into a double layer (Figs. 2a, c, and d) self-consistently modify-

ing the electron and ion velocity distribution functions. Soon after its formation, the DL develops a potential dip

(potential profiles marked with "A" in Fig. 2e) at its low potential end which interrupts the electron current (bottom

panel in Fig. 2e) and it moves toward the anode (compare potential profiles "A" and "B" in Fig. 2e). The moving

double layer sits on an expanding plasma density front moving approximately at the ion-acoustic speed (Singh and

Schunk, 1982b). The expanding plasma and the ion acceleration by the double layer produce counterstreaming ion

beams near the low potential end of the DL (Singh and Schunk, 1982a). In the frame of reference of the moving

double layer, the electron and ion current continuity conditions are maintained (Singh and Schunk, 1982a).

As the double layer moves, the ion flux (current) at the anode reverses from outflux to influx (Fig. 2e). As

the ion current through the DL recuperates, so does the electron current approximately satisfying the Langmuir
condition (Singh and Schunk, 1982c). In the presence of the ion beam and the electron current on the low potential

side, any positive potential perturbation near the cathode triggers the reformation of the double layer and the above

plasma processes repeat in a cyclic fashion (Fig. 2e). The time constant of this cyclic process is the ion transit time

('ri) across the system or equivalently the transit time of the double layer across the system. The above cyclic

phenomenon of DL formation is summarized in Figure 3. The cyclic reformation of double layers has been seen in

simulations with applied potential drops reported by other authors (Joyce and Hubbard, 1978; Borovsky and Joyce,
1983).

Some of the cyclic processes seen in the simulations have also been seen in laboratory experiments (Iizuka et

al., 1983, 1985). These experiments were carried out in a Q machine with both single- and double-ended opera-

tions. In the single-ended operation only the cathode plasma source was operative. On the other hand, in the double-

ended operation both the cathode and anode plasma sources were operative. Iizuka et al. (1983) clearly show that in
both types of operations, cyclic behaviors were seen, but there were some differences between them as discussed

below. With the single-ended operation, the double layer formed near the cathode and subsequently moved toward

the anode and disappeared there, and with the applied potential drop persisting, a new double layer formed near the
cathode and moved away from it. Thus, the double layer appears to show a forward (toward anode) and backward

motion. However, the backward motion (toward cathode) was found to be so fast that the details of the plasma
processes during this phase could not be resolved in the experiments. From our simulations we find that the time

scale of the rise in the potential at the low potential end of the double layer, which eventually leads to the formation
of a new double layer (Fig. 2f), is roughly % < 100 O_po-I . For the plasma densities (-- 108 cm -3) in the experiment, %

0.1 I_S which is much smaller than the temporal resolution of about I Ixs in the experiments.
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In double-ended operations, Iizuka et al. did not see the motion of the whole double layer; instead, a back

and forth motion of the low potential end of the double layer was seen. In agreement with the single-ended opera-

tion, the backward motion was found to be so fast that it could not be resolved in the experiment while the forward

motion was slow. These motions were correlated with the oscillation in the current at a frequency determined by the

transit time of the low potential end during its forward motion. Such features of double layers seen in the Q machine

with the double-ended operations are common in simulations with very short system lengths (Singh, 1980; Singh
and Thiemann, 1980a).

The cyclic behavior seen in the simulations and laboratory experiments driven by applied potential drops
has also been seen in simulations (Singh and Schunk, 1982b, 1983a, 1984a) and experiments (Leung et al., 1980)

in which double layers were driven by current injections.

It is important to assert here that the cyclic behavior seen in the simulations and experiments do not appear to

be an artifact of the boundary conditions. The primary cause of the cyclic behavior appears to be the fundamentally

different time scales associated with the electron and ion dynamics. The plasma processes which lead to the double

layer formation interrupt the ion flux into the double layer. Due to the lack of the ion flux, the double layer moves

and also the current through it disrupts according to the Langmuir condition (Singh and Schunk, 1982c). When the

ion flux recuperates slowly, so does the electron current. Some plasma fluctuations on the low potential side, after

the current recovery, start the process of double layer reformation. In the simulations, the fluctuations are found to

be growing electron holes, which appear to be caused by the rarefaction instability (Carlqvist, 1972; Block, 1972;

Singh, 1982).

The cyclic oscillations discussed above appear to be in accord with the theoretical work of Silevitch (1981),

who showed that in an unbounded plasma, strong double layers have a negative dynamic resistance. Thus, only

when the system (circuit), of which the double layer is a part, is sufficiently "lossy," it is possible to create a steady

double layer. Otherwise, the double layer oscillates with a frequency determined by an effective ion transit time
(Silevitch, 198 I).

It is worthwhile to mention that Smith (this proceedings) draws quite different conclusions from those drawn

here regarding the cyclic behavior of double layers as seen in simulations and experiments. His discussion on the

experimental results with the double-ended operation of the Q machine and the comparison of the results from

experiments (Iizuka et al., 1983) with those from simulations (Singh and Schunk, 1982a,c) are misleading.

The cyclic behaviors of the double layer and the current through it, as discussed here, may be relevant to

some space and cosmic plasma phenomena such as magnetic storms, solar flashes, and solar flares, which are found

to be repetitive (Alfv6n, 1982). It has been suggested that these phenomena may be caused by exploding double

layers (Alfvrn, 1982) which are caused by the inductive effects in the current systems in the plasma. When the

double layer forms, the current interrupts. The decreasing current may induce large voltages which add to the

double layers. The repetitive feature appears because of the subsequent current recovery. The time scale (%) of such

recovery may be determined by the circuit properties. If % << -r_,the current recovery through a DL is dictated by
the time scale of the ion transit time. Otherwise (% > > "ri), the repetition time is determined by %. For a given space

or cosmic situation it is possible to make rough estimates of "ri (Singh and Schunk, 1982c), but it is difficult to

estimate % because of the distributed nature of the circuit properties associated with the currents.

As an illustrative example, let us consider the auroral circuit. If we assume that circuit length parallel to the

geomagnetic field is _11"_--Re, the Earth radius, the transit time of an ionospheric hydrogen ion with thermal energy
1 eV is Ti _ 500 S. For an auroral circuit, Alfv6n (1982) estimated the inductance L _- 30 H. Assuming the resistance

in the circuit to be R "-=-0.1 ohm, % = 300 s. However, we note that these numbers are highly tentative. It is not even

certain that for the auroral double layer, which exists in extended auroral cavity, the transit times across or along the

field lines are relevant (Singh and Schunk, 1982c).
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III. CURRENT INJECTION

The above cyclic process leading to double layer reformation has been seen in laboratory experiments

(Leung et al., 1980) and simulations (Singh and Schunk, 1982b, 1984a) when electron current is injected into the

plasma. However, there are some important differences in the formation processes of the double layers driven by
current injection or applied potential drop. In the former case when the electron drift velocity is sufficiently large the

Buneman instability leads to the double layer formation. In the early stage of the Buneman mode relatively small

scale waves grow (see early time (t < 1920) plots Fig. 4a). During the nonlinear stage of the instability the small

scale oscillations transform into long wavelength ones (1920 < t < 2000; Fig. 4a). Further evolution of the waves

leads to formation of solitary pulses (t _> 2000; Fig. 4a). The double layers evolve from these pulses by self-
consistent modification of the electron and ion distributions.

IV. DOUBLE LAYER STRUCTURE

During their temporal evolution, double layers undergo considerable modification in their potential dis-

tribution which critically depends on the current through the double layers. In this section we illustrate this through
an example in which the plasma was driven by a current as discussed in Section III. However, it is important to note

that the features discussed here are quite general. Figure 4b shows the temporal evolution of the double layer poten-

tial profile after the initial evolution shown in Figure 4a. The corresponding temporal evolutions of the average

electron drift (Vae), electron thermal velocity ('_te), electron current (Je), and electron temperature (i"_), all quan-

tities being on the low potential side (_ = 50), are given in Figure 4c. At early time (t < 2340), when the current
density is large 0=1> 1.5), multiple double layer formations with typical double layer dimension _DL = 20 kao are

seen. On the other hand, when the current interrupts suddenly at t = 2345, the double layer develops a localized
potential dip at its low potential side. At such times Wde < _'rte. The sudden electron current interruption is seen to be

accompanied by a disruption in the ion influx caused by the strong solitary pulse at t = 2345. Figure 4d shows the

structure of the double layers with a dip by plotting the electron and ion density profiles along with the potential

profile. Considering the charge separation (Fig. 4d) we note that the potential distribution is a triple layer. However,

its predominant nature, as determined by the large electric field, is still of double layer type. The dip plays the role of

a current interruptor to adjust the electron current in accordance with the ion influx so that the Langmuir condition is
met.

The formation of a dip at the low potential end of a weak ion-acoustic (IA) double layer has been known

since its first observation in numerical simulations (Sato and Okuda, 1981). The interesting fact to note is that the

formation of an IA double layer itself depends on such dips (Hasegawa and Sato, 1982). On the other hand, we have

shown here that in the case of an already existing double, whether weak or strong (Singh et al., 1985), the current

interruptions lead to the formation of such dips.

V. DOUBLE LAYER SCALE LENGTHS

Several simulations and laboratory experiments have indicated that for strong double layers the scale length

L is given by (Joyce and Hubbard, 1978, Singh, 1980),

L "- 6 (eAdPDL/kBTo) 1/2 (1)
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Thisscalinghasbeenempiricallyderivedfromsimulationsbasedonappliedpotentialdrops.Wefind thatwhen
doublelayersevolvefromwavesorwavelets,suchastheelectronholes(Fig.4b),thedoublelayerscalelengthis
typicallyof theorderof thescalelengthof theperturbationsfromwhichtheDL evolves.

Vl. CONTACT BETWEEN DIFFERENT PLASMAS

The existence of contact potentials (electric fields) near the contact surface between two materials having

different electrical properties is a well-known phenomenon. In plasmas, the existence of such potentials has been

investigated in connection with plasma confinement (e.g., see Sestero, 1964). In space plasmas, the studies related

to the structure of the magnetopause indicate that this is a region where contact potentials can develop (e.g., see

Whipple et al., 1984 and references therein). Several years ago, Hultqvist (1971 ) suggested that the contact between

the hot plasma in the plasma sheet and the cold ionospheric plasma may create magnetic field-aligned (parallel)

electric fields which could account for the observed precipitating energetic ions along the auroral field lines. More
recently, Barakat and Schunk (1984) suggested that the contact between the cold polar wind electrons and the hot

polar rain electrons may create parallel electric fields.

It is now clear that electric fields perpendicular to the geomagnetic field are an important feature of the

auroral plasma. However, the mechanisms for creating such fields have not been well established. It is possible that

they are supported by discontinuities in the plasma properties (such as particle temperatures and densities) across

magnetic field lines. Such discontinuities, in which the normals to the plane of the discontinuities are perpendicular

to the magnetic field lines, are known as tangential discontinuities.

Even though the existence of perpendicular electric fields in the auroral plasma is well established, the

nature of the plasma discontinuities (associated with the fields), if they exist, remains virtually unexplored.

Recently, however, Evans et al. (1986) have presented observational evidence that tangential discontinuities do

occur in association with discrete auroral arcs. They also conducted one-dimensional steady-state calculations on

the generation of perpendicular electric fields through the contact of a high-density hot plasma with a low-density

relatively cold plasma. They obtained electric fields having scale lengths of both the electron and ion Larmor radii.

This is expected because in their model the electrons were not highly magnetized; they used f_e/COp_< 1/3, where f_e

and tope are the electron-cyclotron and electron-plasma frequencies, respectively. However, in the auroral plasma,

where the large perpendicular electric fields have been observed, typically _-_e > > tope, implying highly magnetized
electrons.

Motivated by the observations of large perpendicular electric fields in the auroral plasma, we have pursued
two different approaches for creating perpendicular fields by contact potentials as follows:

. When a low-density containing sufficiently hot ions is sandwiched by high-density cold plasmas, it is

possible to generate electric fields having strengths comparable to those observed in the auroral plasma.

In such a situation the electric fields occur near the edges of a cavity in the plasma density as it is

sometimes the case in the auroral plasma (Mozer and Temerin, 1983).

. Upward field-aligned currents are a well-known phenomenon in the auroral plasma. These currents can

occur in the form of thin sheets or filaments. We study such a situation by driving currents through a
background plasma. The currents flow in sheets of finite thicknesses. The contact between the plasmas

inside and outside the sheet produces perpendicular electric fields.

By means of numerical simulations, we have studied the above mechanisms for the generation of perpen-

dicular electric fields. We briefly summarize our studies in the following two subsections.
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A. Perpendicular Electric Fields Near the Contact Surface Between Hot and Cold Plasmas

Figure 5 shows the geometrical scheme of our simulations. Using a standard particle-in-cell code (Morse,

1970), we simulate a two-dimensional plasma of size Lx × Ly. The magnetic field B is along the y-axis. It is
assumed that all field quantities and plasma properties are invariant along the z-axis. In order to study the generation

of the perpendicular electric fields, the plasma is stratified along the x-axis. The simulation plasma is divided into

regions I, II, and III, which are initially (time t = 0) filled with plasmas with different properties. For this study, the

plasmas are as follows. In region I, nil = ne_ = no, where n denotes density and subscripts e, i, and 1 refer to

electrons, ions, and region I, respectively; the electron temperature Tel = T O and the ion temperature Til is varied in

the different simulations. In regions II and III, the plasma properties are the same: n_2 = ne2 = ni3 = ne3 and T_2 =

Te2 = Ti3 = Te3 = Tc. The temporal evolution of the plasmas for t > 0 is followed by calculating the particle

dynamics with the self-consistent electric fields.

In our simulations we use the electrostatic approximation. Thus, the electric fields are calculated by solving

the Poissson equation with the following boundary conditions: +(x = -Lx/2,y) = _b(x = Lx/2,y) = 0. Note that

these are the Dirichlet conditions on the electric potential 4. Along y we use a periodic boundary condition, imply-

ing +(x,y = 0) = +(x,y = Ly). The electric fieldE is obtained from E = -V+.

In the simulations described here, we ignore the magnetic fields generated by the plasma currents, which

flow near the plasma interfaces. Thus, the ambient magnetic field remains unperturbed. Such an assumption

appears justified at altitudes up to a few Earth radii, where the geomagnetic field is strong and the particle pressures

are much smaller than the magnetic pressure.

We use the following definitions and normalizations: density fi = n/no; temperture "F = T/To, where no and

To are the initial (time t = 0) density and electron temperature in region I; distance _ = x/hdo; velocity "q = V/Vto;

time t = tt%o; electric potential _ = e_b/kaTo; electric field 1_ = E/Eo; current ] = J/(noeVto), where Vto = (kBTo/

m_) _/2, tOpo= noe2/m_eo, hdo = Vto/tOpo, Eo = kaTo/ehdo, kB is Boltzmann's constant, and me is the electron mass. In
the simulations we use an artificial ion mass, m_ = 64me.

The results described in the following sections are taken from simulations in which Lx × Ly = 64 × 64 hdo2,

d = 32 hdo, _e/O_po = 4, where f_e is the electron cyclotron frequency, and where the number of electrons and ions
per cell of dimension hdo2 was 4 in region I and 16 in regions II and III.

When the plasma properties change along a direction perpendicular to the magnetic field, as in Figure 5, the

ions play a crucial role in creating the contact potential near the interfaces between the different plasmas. As long as

the ion temperature Ti > (mflmi)_/2T_, where T_ is the electron temperature, the ion Larmor radius p_ > pe, the

electron Larmor radius. Thus, ions from the neighboring plasmas penetrate the interface more effectively than do

the electrons. Thus, depending on the relative densities and the ion temperatures in the neighboring plasmas, a

contact potential may develop.

There are numerous possibilities for choosing the relative densities and temperatures in region I to III of

Figure 5. In this study, we were primarily motivated by the observations of perpendicular electric fields near the

edges of density cavities (Mozer and Temerin, 1983). Thus, we chose fi2 - fi3 = 4 and fi_ = 1. We assumed that the

dense plasmas in regions II and III were cold and that they had the same temperature Tc < To. On the other hand, the

electrons and ions in region I were assumed to be warmer than those in the other two regions. We present results on
the effect of the variation of the warm ion temperature on the perpendicular electric fields that developed near the
contact surfaces.
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Figure 6 shows the distributions of the electric potential, the perpendicular electric field, and the plasma

density as functions of _ at t = 100 for Tc = 0.2 To, and Tit = 20 To. Recall that Tel = To. Thus, in the low-density

plasma of region I, the ions are hotter than the cold ions in regions II and III by a factor of 100. We note that the

average Larmor radius of the hot ions PH _--9 hdo. The quantities shown in Figure 2 are time-averaged over a time
interval of A_ -- 50 centered at t = 100.

Figure 6a shows that a negative potential valley develops in region I (]_l < 16). The large perpendicular

electric fields develop near the contact surfaces, where sharp gradients occur in the density (Fig. 6b). The maximum

magnitude of the electric fields is approximately I_± _- 0.6 and the scale length of the electric field near each

interface is about PH _- 9 hdo.

We find that such large electric fields develop only when the ions in region I are sufficiently warm. In order
to show this we carried out simulations by varying the hot ion temperature T_. For Til = To, we did not find any

enhancement in El near the interfaces. As the ion temperature Ti, was increased, bipolar electric fields developed
near the interfaces; for TidTo = 5, E±max - 0.2. It was found that for Ti_/To > 10, E±max does not increase

indefinitely, but for the parameters used in the simulation it is limited to about ]__Lmax _ 0.6.

A noteworthy feature was found that is that the electric fields maximize just inside the low-density plasma

and not at the interface (Fig. 6). This happens because the gyrating cold ions in the high-density plasmas of regions

II and III partially neutralize the space charges created by the hot gyrating ions near the interfaces. In Figure 6 the

magnitude of the hot ion Larmor radius PH is indicated. The electric fields at the interfaces have scale lengths of the
order of the Larmor radius.

The temporal evolution of the potential drop Aqb = +(x -- 0) in the simulations show that at early times (t <

20) the potential drop grows and afterward undergoes a slow oscillation, with time-averaged values depending on

the hot ion temperature Til. It is worth mentioning that the time constant ('too, t) for the development of the contact

potential (A_b) is approximately given by

-1 _ _-_i-I (2)Tcont _ 20 O,)po

where _ is the ion-cyclotron frequency (12_ _- eB/mO. By varying l)e/tOpo, we found that the above scaling of 'rcont

with 12_is generally valid. Thus, the contact potential sets up with a time constant that is associated with the ion

cyclotron motion.

The slow oscillations occur at the ion-plasma frequencies of the plasmas in regions I and II. Comparing the

relative amplitudes of E± and Eliassociated with the oscillations, we find that E± > > Eli. Thus, these oscillations are

not of the ion-acoustic type, but are associated with the lower hybrid frequencies in regions I to II.

It is important to note that the geometry of our simulations does not allow the excitation of drift modes

propagating in the direction of the diamagnetic currents near the interfaces at x = ---d/2. These currents flow along
the z-axis. We have assumed in our simulations that all physical quantities are invariant with respect to z. Thus, no

wave modes are allowed to propagate in this direction.

The contact potential develops because the hot ions in region I, while gyrating, penetrate into the neighbor-

ing plasmas of regions II and III. In order to show this, the ion velocity distribution function (F) is plotted in Figure 7

as a function of the x-component of the ion energy, Wx = 1/2 miVx 2 = 32 Vx2kBTo, at several locations for the

simulation with T_dTo = 15. The distribution at x = 0 (center of region I) clearly matches the initial Maxwellian

distribution with a temperature q'_l = 15, as shown by the asymptote marked with this temperature. On the other

190



hand, at _ = 32 (near the end of region III) the ion population is cold. At _ = 24, we see that the hot and cold ions

have mixed together. The average ion Larmor radius for the hot ions in region I for 'ril = 15 is 'PH _ 8. Thus, we

expect the penetration of a large number of hot ions from region I(1 1< 16) into region III up to a distance of about

24. This is verified by the distribution function at _ = 24. The distribution at _ = 16 is near the initial interface,

where we see that compared to the numbers of ions in the cold and hot populations at _ = 24, the number of ions in

the cold population has decreased, while that in the hot population has increased.

We summarize this section by noting that when a low-density plasma containing hot ions comes into contact

with a high-density cold plasma with the contact surface being parallel to the magnetic field, it is possible to create

perpendicular electric fields. The time constant for creating such fields is roughly Oi -1 and the scale length is appro-

ximately PH, the Larmor radius of the hot ions.

The above results indicate that when the hot ion temperature T_ > 10 To, a rough estimate of the strength of

the perpendicular electric field is

E± -0.5Eo , (3)

where the normalizing electric field Eo critically depends on no and To. When no varies from 1 to 10 cm -3 and To

varies from 1 to 100 eV, the strength of E± ranges from several tens to several hundreds of mV/m. Satellite observa-
tions indicate that the electric fields associated with electrostatic shocks (Mozer et al., 1980) have a similar strength.

For example, if we assume that the hot plasma in region I is of plasma sheet origin and the electron temperature To =

100 eV, then it is possible to create perpendicular electric fields of several hundreds of mV/m if the hot ion tempera-
ture T_ > 1 keV, which is common in the plasma sheet. For To = 100 eV, the cold plasma temperature assumed in

our simulations is Tc = 20 eV. We find that when Tc is reduced below 0.2 To, as assumed here, this does not

significantly affect the electric fields. Thus, the cold plasma may originate in the ionosphere.

However, the question of how the stratification of the plasma assumed in our simulations (Fig. 5) is created

in space plasmas still needs to be answered. It now appears that plasma blobs and clouds are created in the magneto-

tail region. When these blobs of plasma move closer to the Earth where a colder plasma exists, the stratification of

the plasma assumed in our simulations may be created.

In this section we were mainly concerned with the generation of perpendicular electric fields. In the near

future we will study the creation of parallel electric fields, the formation of double layers, the parallel acceleration of

electrons and ions, and the generation of parallel currents that occurs when the perpendicular electric fields gener-

ated by contact potentials are shorted out by a conducting boundary. Such studies will complement our previous
studies on current sheets as summarized in the next section.

B. Double Layer Structures Associated with Current Filaments or Sheets

There are evidences that the current systems in space and cosmic plasmas are filamented (e.g., see Alfvrn,

1982 and references therein). Thus, there is a need to study double layer structure in filamentary currents. The

available temporal and spatial resolutions for the plasma measurements in the auroral region indicate that the field-

aligned currents are highly structured in the form of current sheets with north-south thicknesses of a few kilometers

(Dubinin et al., 1985). Probably even thinner sheets exist but they have not been resolved.

Here we briefly summarize our recent efforts on simulations of double layers driven by current sheets (Singh
et al., 1983, 1984, 1985; Thiemann et al., 1984). Figure 8 shows our simulation scheme. A two-dimensional
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plasma of size Lx × Ly is driven by a magnetic field-aligned current sheet having a current density Jo. Initially the
simulation region is filled with a plasma of density no and temperature To. At later times, particles are injected both

at the top and lower boundaries. Electrons and ions injected at the top boundaries have temperature To and T_u (TH)

while those at the lower boundary Ti_ and Te_. Various simulations were performed by varying these temperatures

using a standard particle-in-cell (PIC) code. The electron current is set up in the sheet by injecting electrons at the

top of the current sheet at rates to produce desired current (flux) densities. These electrons were also given a down-

ward drift Vde- Overall, charge neutrality of the simulation plasma was maintained by counting the number of

electrons and ions and injecting an appropriate number of the deficient particles at the lower boundary. The electro-

static boundary conditions are as follows; the plane y = 0 is assumed to be conducting, _b(x,y = 0) = 0; at the top

boundary we set Ey(x,y = Ly) = 0 and a periodic boundary condition was used in x.

We use the following definitions: hdo is the Debye length based on the temperature To and on the initial

density of no = 4 particles per cell, _-_e is the electron-cyclotron frequency and COpo2 = noe2/meo, where eo is the

permittivity of free space and m is the electron mass. The ion-electron mass ratio was chosen to be M/m = 64. In the
analysis that follows, we use the following normalizations: distance _ = y/hdo, time t = tOpo, velocity '_/ = V/Vto,

potential _ = e_b/kBTo, electric field I_ - E/Eo, Eo = (kBTo/ekdo), and current density J = J/(enoVto), where Vto =

(kBTo/me)'/2. The numerical technique used here has been previously described in much greater detail by Singh et al.

(1985).

Figure 9 shows an example of the potential structure as seen in a simulation in which _ = 12 hdo, PH = 9 hdo,

Pi_ = 4 kdo, _e/tOpo = 2, ]o = 1.25, TH/To = 5, Te£ --- Ti_ = To, andLx x Ly = 64 x 128 kdo2, where PH and Pi_.
are the Larmor radii of the ions injected at the top and bottom of the simulation plasma, respectively. The potential

structure is illustrated by plotting (a) equipotential surfaces, (b) contours of constant E±, the component of the

electric field perpendicular to the magnetic field, and (c) contours of constant Eli, in x - y plane. The current sheet
edges are indicated by the arrows at the bottom of each panel. The solid and broken line contours show positive and

negative values of the quantities. A V-shaped potential structure is evident from panel (a); a negative potential

valley develops in the upper portion of the current sheet. Panel (b) shows the occurrence of a large bipolar perpen-

dicular electric field near the edges of the current sheet at the top of the simulation plasma. The perpendicular

electric fields develop due to the contact between the high-density plasma inside the sheet with a low-density plasma

around it (Kan and Akasofu, 1979; Wagner et al., 1980; Singh et al., 1983). The hot ion Larmor radius determines

the perpendicular scale length of the electric fields. The V-shaped potential structure develops when the perpen-

dicular electric fields originating near the top of the simulation plasma are shorted out by the conducting surface at y

= 0, thus, creating a parallel potential drop.

Panel (c) of Figure 10 shows the localized parallel upward electric fields as indicated by the "H" inside the

current sheet. These parallel fields are of double layer type. There are three double layers stacked on top of each

other inside the current sheet. The existence of these double layers can also be inferred from the equipotential

surfaces in Figure 9a. Typically the maximum electric field strength in the double layers is about I_ = 0.25. The

scale length of the double layers along the magnetic field is found to be about 10 hdo while they fill the entire width of
the current sheet.

The double layers shown here are not dc, but they undergo considerable temporal variations at time scales

ranging from electron to ion-plasma periods. Figure 10a shows the temporal variation in the double layer potential

profile after averaging out the fast electron oscillations. Note the considerable changes in the potential profile and as
well as in the magnitude of the net potential drop across the double layer. The temporal variations in ELIand E± at the

point (0, 100) in the region of double layer formation, are shown in Figure 10b. Even at the times when Ell has a dc
component, there are considerable fluctuations in both Ell and E±. These fluctuations appear to have frequencies

ranging from below the ion-cyclotron frequency to above the lower hybrid frequency. In addition, Eli is found to

have high frequency oscillations up to electron-plasma frequency and its harmonic which are averaged out in Figure

10b. The high frequency oscillations are not seen in E±.
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In a narrow current sheet, as discusssed above in context of Figures 9 and 10, it is difficult to distinguish

clearly between the double layers inside the current sheet and the large perpendicular electric fields occurring near

the edges of the sheet. On the other hand, in wide sheets (£ >> PH), the double layers inside the current sheets are

well separated from the large El occurring near the edges. Figure 11 shows an example of a potential structure

associated with a current sheet of thickness _ = 32 h do, and _/PH _ 10. Panel (a) shows the equipotential surfaces in

the x - y plane, panel (b) shows the perpendicular distributions of E±(x) and _b(x) at y = 120 hdo, and panel (c)

shows the perpendicular distribution of Jil(X) at y = 120 hdo. In this simulation maximum possible value of the
upward current in the sheet is Jo -_ 0.6 noeVto. Note that only weak potentials (- kaTo/e) develop inside the sheet,

and the regions exterior to the sheet near the top (panel a) are highly positive. The perpendicular potential profile in

the sheet is quite flat (panel b). Thus, El is mostly confined near the edges. In the region of large Ej, near the edges

we find that E l > > Etl, which is an important feature of the electrostatic shocks observed in the auroral plasma

(Mozer et al., 1980). On the other hand, inside a wide sheet where double layers from E± -- Ell and both E± and Ell are

considerably smaller than the perpendicular electric field near the edges. It is found that near the edges

EL -- Elm _ Eo (4)

We note that Eo depends on no and To; when no varies from 1 to 10 cm -3 and To from 1 to 100 eV, Eo ranges from
about 100 to 1300 mV/m. Thus, the large perpendicular electric fields occurring near the edges of the current sheets

resemble the phenomenon of electrostatic shocks observed in the auroral plasma Mozer et al. (1980).

that
Whether or not the double layers are well separated from the large E l near the current sheet edges, it is found

EIIDL << Eo (5)

Depending on no and To, EItDL may range from a few mV/m to several tens of mV/m. So far only weak double layers
(Ell < 15 mV/m) have been observed in space plasmas (Temerin et al., 1982).

We find that in the case of wide sheets it is possible to develop relatively large downward parallel electric

fields outside the current sheets (panel a, Fig. I 1). These fields drive downward return currents (panel c).

In these simulations we have seen both parallel and perpendicular accelerations of ions (Singh et al., 1986).
Most energetic ions are seen to be at pitch angles near 90° . Ion beams are seen only in narrow sheets with thicknesses
_PH.

It is found that the double layers play a key role in electron acceleration, even though, all the features of the

accelerated electrons cannot be explained by a simple picture of electron acceleration by dc double layers. The
double layers act as a trigger mechanism for a host of plasma processes, which determines the velocity distribution
function of the accelerated electrons.

193



VII. PLASMA EXPANSION

Plasma expansions have been studied since the pioneering work of Gurevich et al. (1966), who studied the

expansion of a plasma into a vacuum using the quasi-neutrality approximation. In this case the plasma equations

allow self-similar solutions. However, this approximation breaks down in the low-density region where the local
plasma Debye length becomes comparable to the scale length in the density gradient. Thus, a positive-negative

charge separation occurs like in a double layer (Singh and Schunk, 1984b). However, it is worth noting that there is

no current through such a double layer. The charge separation is supported by a relative smooth variation in the

electron density while the ion density has a sharp density jump creating an ion density front. The plasma expansion

is preceded by such a density front, behind which the self-similar solutions are found to be valid.

When a high-density (nl) plasma expands into a plasma of low density (nil), the expansion properties criti-

cally depend on the density ratio R = n_/nu (Mason, 1971). An example of such a dependence is shown in Figure 12,

in which we have compared the potential profiles associated with expanding plasmas as the ratio R is varied from R

= 0.001 to 0.2. The potential profiles shown in this figure are obtained as follows. We consider that initially (time t

-- 0) the high- and low-density plasmas occupy the regions I (x _< 300 hdi) and II, respectively. At times t > 0, the

expansion is studied solving Vlasov equations for the ions in a self-consistent electric field obtained by solving the

Poisson equation. The electrons are assumed to obey the Boltzmann law. In the calculations presented here we

assume that the electron temperature Te -- 10 Ti, where T_ is the initial ion temperature in regions I and II. The

potential profiles shown in Figure 12 are at t = 60 tOp_-_, where (.Opiis the ion-plasma frequency in region I and hoi --

gti/O)pi with Vt_ being the ion thermal velocity. The different curves shown in Figure 12 are for different values of R
as marked.

The noteworthy feature of the potential profile shown in Figure 12 is that as the density in region II is

increased, the potential profiles steepen over a localized region in the expansion zone. When R is increased from

0.001 to 0.01, we note the formation of a "knee" in the potential profile near x - 625 hdi. When R is increased

further this "knee" steepens and for n = 0.1 and 0.2 we note the presence of two sharp transitions in the potential
profiles; one occurs in region I in which the rarefaction wave propagates in the backward direction, and the other

occurs in the expansion region II. Near the transitions localized electric fields, like that in a double layer, occur. It is

important to note that the sharp transitions in the potential profiles (double layers) occurring in regions I and II move

in opposite directions. With increasing time the potential profile in region I becomes less and less steep while that

near the sharp transition in region II maintains its profile giving a localized electric field nearly constant with time.

The features associated with occurrence of localized electric fields also occur when a multi-ion plasma expands into

a vacuum (Singh and Schunk, 1983b).

VIII. CONCLUSION

We have presented a brief summary of our studies related to the generation of electric fields in plasmas.
Some of the mechanisms we discussed are as follows. When a potential drop is applied across a plasma, localized

electric fields in the form of double layers occur. Double layers also form when a current is drawn through a plasma.

The dynamical feature of such a double layer shows a cyclic behavior with a frequency determined by the transit

time of the ions across an effective length of the system, in which the double layer forms. The formation of a

potential dip at the low potential end of a DL and the current interruption are intimately related phenomena.
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We have also discussed the generation of electric fields perpendicular to the ambient magnetic field in a

plasma. Such fields can be generated by contact potentials near discontinuities in plasma properties. It was found

that ion gyration plays an important role in generating the fields. The cases presented indicate that the scale length of

the perpendicular electric field is of the order of the ion Larmor radius. Two complementary situations, in which

perpendicular electric fields can be generated, were discussed. In one situation, we considered a low-density hot

plasma sandwiched between high-density cold plasmas. It was shown that even if the hot ion density is low these

ions are effective in creating electric fields of the magnitude observed in the auroral plasma. In the other situation,

we considered a current sheet in a plasma. The density gradient across the sheet created the perpendicular electric
fields. The formation of double layers in the sheet were studied.

The generation of electric fields in expanding plasmas was briefly discussed. It was shown that when a

high-density plasma expands into a low-density plasma, the nature of the spatial distribution of the electric field

critically depends on the density ratio of the two plasmas. A currentless double layer forms near the expanding
plasma front.
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Figure 2. Double layer formation and dynamics as seen in one-dimensional Vlasov simulations. In the simulation,

the plasma occupied the region 0 <_ x <_ 100 Xo, where Xo is the Debye length in the initial plasma (t -- 0) across

which a potential drop of Ad_o = 30(kBTo/e) was applied, where To is the initial plasma temperature• We used the
following normalizations: _ = X/Xo, velocity "v" -- V/Vto, time t = tCOpo, temperature 1" = T/To, potential Ub =

e_b/kBTo, current ] = J/noeVm, where V,o = (kBTo/me) i/2, 0%0 is the electron plasma frequency with the initial

density no, kB is the Boltzmann constant, m_ is the electron mass, and m_/m_ = 64, with m_ the ion mass; (a) temporal
evolution of the potential profile, (b) temporal evolution of the current density profile, J_(_), (c) double layer poten-

tial profile at t = 150, (d) density profiles and space charges supporting the DL in (c), and (e) recurring DL forma-
tion (top) and electron and ion current interruptions and recovery (bottom)• The arrows indicate the times of the

potential profiles; the arrows originating from the potential profiles marked with "A" indicate that these profiles

correspond to the early stages of the electron current interruptions and to the beginning of the ion influx into the

double layer during the three cycles of the double layer formation. Note the dip at the low potential end. The

potential profile marked with "B" corresponds to the current recovery stage during the first cycle• (f) Potential

profiles during a reformation of the DL; at t = 400 there is aDL, a positive potential perturbation near x = 0 is seen

at t -- 500; at later times this perturbation grows and eventually a new DL forms at t _ 610.
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CYCLIC NATURE OF: DOUBLE LAYERS

Apply a Potential Drop

U

Uniform Electric Field

Accelerate Electrons (earlytime)

U

Up > do (near cathode boundary)

tL

Positive Spacecharge Near Cathode Boundary

U
Electron Hole & Propagation
Counterstreaming Electrons
Plasma Modification/Expulsion
Cavity Formation
Distruption of Ion Flux from the Anode Boundary

U

DOUBLE LAYER (DL)

U

DL Propagation/Plasma Expansion from Cathode

U

Potential dip Formation at the Low Potential Side

U

Ion Influx Resumption at Anode (Ion or DL Transit Time Effect)

U

Current Recovery

U

Instabilities on the Low Potential Side

U

Positive Potential Perturbation near the Cathode

Figure 3. Summary of the various plasma processes occurring during the formation and

reformation of a DL when a potential drop is applied across a plasma.
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Figure 4. (a) Double layer evolution from the Buneman instability. Spatial profiles of the electric field E are shown

at different times. At early times, 1880 < t < 2000, small wavelength waves grow. At later times, in the nonlinear

regime, these waves coalesce into long wavelength oscillations, which evolve into solitary pulses and double
I..,a.o gk% T ...... I,,,:_ .... tu) , _.,,,l-,,-,la, e'v'olutioi-_ of the double layer potential profile, (c) the corresponding temporal evolutions of the,

electron current Je, electron drift velocity Vde, thermal velocity Vte, and temperature Te at _ = 50, and (d) spatial

profiles of the electron and ion densities and the potential profile for a DL with a dip at its low potential end. The

charge separation indicates the presence of a triple charge layer.
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recirculated according to a periodic boundary condition, while those leaving at x = ___Lx/2 are replaced from
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Figure 10. (a) Temporal evolution of the double layer potential profile along the axis of the current shown

in Figure 8 and (b) fluctuations in Ell and E j_ in the region of the DL formation.
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Figure 11. (a) Potential structure associated with a wide current sheet, with _ = 32 Xjo, PH ---- 3 hjo, and Jo = 0.6

noeVto. The current sheet edges are indicated by the arrows at the top of the panel. Equipotential surfaces are shown.

(b) Perpendicular distribution of E± and + near the top (_¢= 1120) of the potential structure in (a). Note that E± is
primarily confined near the edges of the current sheet. (c) Perpendicular distribution of the parallel current density

JII; note the positive (upward) current inside the sheet, while outside the sheet the current is negative (downward).

The downward current is caused by the upward acceleration of the electrons by the downward (parallel) electric field

(see the potential distribution outside the sheet in (a)).
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Figure 12. Snapshot (t = 60 tOpo-j) of the potential profile associated with the expansion

of a high-density plasma into region II. The different profiles are for

different values of the density ratio n_/nn, as indicated.
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